

Simultaneous saccharification and fermentation of *Jatropha curcas* (Linn.) seed cake for production of bioethanol: a biotechnological approach

Abebe G. Demissie

Prof. Smita .S. Lele

Symposium on Biodiversity and Nature Conservation May, 22-23/2013

INTRODUCTION

- Lignocellulotic biomass is the most abundant biomass in the world which can be obtained from agricultural and other biodiversity residues like straw.
- Such lignocellulose containing biomass can be used potential source for the production of bio-fuel and solve the dependence of country on imported petroleum products
- Seedcake after exhaustive oil extraction process also reported to have significant percentage of such components (Ververis *et al.* 2007).
- Bioethanol have been produced from ligno-cellulosic biomass in a various process of hydrolysis, fermentation or dehydration of various crop biomass like sugar cane, wheat and rice straw (Mosier *et al.*, 2005).

- Since, lignocellulosic materials have a complex chemical structure and high pentose fraction makes tough to hydrolysis or other process alone.
- Hence, optimized pretreatment, followed by enzymatic hydrolysis and fermentation have been suggested as a the best method (Buaban *et al.* 2010).
- In this process sugar accumulation in the system proved to be minimized and yields to be improved
- Yield have been favored by fermentation period, substrate, incubation temperature, growth conditions of the microbes. (Cazetta *et al.* 2007)).
- However, little attention been given to the component of the Jatropha seedcake and the potential of simultaneous enzyme hydrolysis and fermentation for production of bioethanol.

- This study thus aimed at to investigate the potential use of a simple integrated process of simultaneous enzyme hydrolysis and fermentation for the production of bioethanol using Jatropha seedcake as a substrate.
- The use of appropriate statistical approach like D-Optimal to see the interaction of the independent variables and the impact on the ethanol production have been neglected.
- There is also little study so far have been done on the pretreatment of the seedcake and used for study of enzyme saccharification and fermentation for production of bioethanol

OBJECTIVES

General objectives

To investigate simultaneous saccharification and fermentation of *Jatropha curcas* (Linn.) seed cake for production of bioethanol.

Specific objective

- To use *Jatropha* seed cake as an alternative source for bioethanol production.
- To pretreat the *Jatropha* seedcake and increase the conversion of polymeric into monomeric carbohydrate
- ✤ To determine cellulase enzyme activity and Enzymatic saccharification
- To determine the component of the seedcake like cellulose, lignin, hemicellulose and ash.
- To optimize the condition for maximum production of bioethanol.

METHODS AND MATERIALS

***** Sample preparation and component analysis

- The seed of *Jatropha curcas* was procured from Suntan, Tamil Nadu, and India. Then the sample was dried and ground
- Ash, lignin, cellulose and hemicellulose contents of the seed cake were determined.
- ➤ The dried samples of 0.5gm were boiled in 5 mL of 75% w/w H₂SO₄ solution for 6hrs in order to hydrolyze the cellulose and hemicellulose. (W1)
- > The residue was heated at 600° C for 6hrs and ash content (W2) was determined.
- Lignin was then calculated by the difference (W1 W2). (Miller, 1959).
 Anthrone method was used to calculate total carbohydrate

Substrate and pretreatments

➤The dried seedcake was pretreated with upto 2.5% NaOH and/or 4%NaOCI (Gould 1983, Ghose 1987).

>5gm of the biomass was suspended in 50ml solution of NaOH and NaOCl in a flask at a room temperature for 4h which maintain the ratio of solid to liquid as1:10(w/v).

 \succ The solid residue was collected by filtration and washed extensively with distilled water until neutral pH.

> Pretreated biomass was dried in the oven at 60^oC used for enzymatic hydrolysis (Eveleigh *et al.* 2009).

***** Enzymatic saccharification

- This experiment was carried out in stoppered conical flasks (100 ml) in the presence of 0.01% sodium azide.
- The pH was adjusted with 0.05 M citrate buffer, and cellulase was added to the pretreated substrate (2.5%, dry weight basis) in a total volume of 50ml reaction medium.
- ✤ The flasks were incubated at 50°C on an orbital shaker agitated at 150 rpm.
- Aliquots of 2 ml were taken periodically, centrifuged and the supernatants analyzed for reducing sugars. The percentage of saccharification was calculated according to (Ghose 1987).

* Preparation of microbial inoculum

- Trichoderma reesei and Zymomonas mobilis were obtained from NCIM (National Chemical Laboratories, Pune, India).
- To prepare the inoculum were suspended in 2ml medium and then pipetted into a 250ml Erlenmeyer flask containing 50ml of growth medium and incubated in a shaking bed (180rpm) at 30°C.
- The initial pH value of the medium was adjusted before being autoclaved at 121°C for 20min.
- After 24h grown microbes in the medium was used as the inoculum for enzymatic hydrolysis. The amount of inoculum used was 5% (v/v) of the medium in the SSF. The cultures were routinely grown as described (Lee and Huang, 1995).

Simultaneous saccharification and fermentation (SSF)

- Simultaneous saccharification and fermentation was carried out in reaction mixtures consisted of treated substrate.
- The composition of the hydrolysis medium was as follows: various concentration of the pretreated biomass, enzyme loading, pH, incubation temperature and working volume.
- The SSF mixture was autoclaved and studies were carried out in 250 ml conical flasks with in various working volume.
- Thereafter culture broth was centrifuged and the supernatant was analyzed for reducing sugars and ethanol.

* Analytical methods

- ✤ Jatropha seed cake was analyzed for cellulose, hemicelluloses, (acid insoluble) lignin and ash (Ververis *et al.* 2007).
- Potential glucose, sugars and lignin in the substrate were determined after total hydrolysis with H₂SO₄ using DNS method and total carbohydrate was determined using anthrone reagent.
- Cellulase activity was assayed as FPU (filter paper units) (Eveleigh *et al.* 2009).
- Ethanol was estimated by micro-dichromate method using microplate reader (Wang *et al.* 2003; Xiao *et al.*, 2004). Ethanol was used as standard (Cazetta *et al.* 2007).

* Experimental design and Data analysis

- The experiment was design using optimal which shows various interaction of multiple independent variable with the yield using RSM.
- The results of each D-optimal design were analyzed using Design Expert software version 7.1.5.
- ✤ All experiments were conducted in triplicate.

RESULTS AND DISCUSSION

Seedcake composition, enzyme saccharification and cellulase activity

- The *Jatropha* seed biomass was dried over night at 50°C in an oven, ground, sieved and then taken for the study.
- Each time 50g powder were packed in soxhlet and defatted with petroleum ether (60-80°C) for 30-35 complete cycles.
- The petroleum ether extract was concentrated using Buchi-Rotavapor at reduces pressure and temperature.
- ✤ The seedcake was then made ready for further study.
- Thereafter total carbohydrate, lignin, cellulose, hemicellulose and ash contents were determined and the result is shown in figure 1

- Cellulase activity was determined using filter paper unit and found to be 40 FPU/gm.
- Cellulase Enzyme saccharification rate was also assessed and the result is shown in figure 2.

The enzyme works for 96.65% conversion of the polymeric carbohydrate into monomeric carbohydrate forms at a pH=4.5 treated with NaOH at 50°C within 36hrs

* Strain selection for Simultaneous saccharification and fermentation (SSF

- Simultaneous saccharification and fermentation (SSF) was carried out using two microbial strains Zymomonas mobilis and Trichoderma reesei based on the report (Rogers et al., 1997).
- During screening experimental factors the *T. reesei* was found to be bulky and less resistant to alcohol than *Z. mobilis*.
- ✤ Moreover, *T. reesei* has take more time of fermentation.
- ↔ Hence we used *Z. mobilis* for further optimization study.
- Among the factors selected for the cultivation of the microbes the five factors: incubation temperature, pH, enzyme load, substrate concentration and working volume were found to be superiors and considered for further optimization process.

* Optimization and validation study for production of bioethanol.

- The experiment was performed with various parameters like pH, enzyme loading, temperature, substrate concentration and working volume using optimal RSM statistical approach.
- In the study the temperature ranges of 25-37°C, pH 4-9, enzyme load ranges from 0.25-0.75%, substrate concentration from 4-8% and working volume ranged from 50ml-100ml were used.
- Hence, the Optimized condition using D-Optimal pH=4, enzyme load of 0.25%, substrate concentration of 8%, incubation temperature of 31°C and working volume found to obtain 78.52% (which is some what near to the value predicted by the software) conversion of ligno-celullotic material converted to alcohol in 24hr of incubation time (figure 4).

- In the experiment a total of 27 runs with five variables at three levels were used to optimize.
- Three-dimensional surface plots were drawn to illustrate the effects of the independent variables on the dependent variable, and described by a quadratic polynomial equation and fitted to the experimental data (Fig. 5A-D).

The model equation

Ethanol (%) =35.23+4.71 * A-3.27* B-0.76 * C+7.38* D-5.40 * E-8.21* A * B-5.26* A * C+6.82* A * D+2.5* A * E-0.27 * B * C-0.37 * B * D-9.69 * B * E+0.81* C * D-3.88* C * E-6.92* D * E+14.53 * A2 -18.95 * B2-4.24 * C2+9.14 * D2-1.76 * E2

- Where the independent varioables represented as A: pH, B) enzyme load, C) Substrate concentration, D) Working volume and E) Incubation temperature
- * The fit of the models was evaluated by the determination of R^2 coefficient =0.935.

D-optimal design experimental and predicted values of bioethanol production.

Run	pН	Enzyme Load	Substrate concentration	Working volume	Temperature	Actual	Predicted
1	4	0.25	6	50	25	60.22	61.29
2	4	0.75	6	50	37	55.83	55.68
3	6.5	0.75	8	100	25	27.28	27.33
4	9	0.75	8	50	31	12.27	15.36
5	9	0.25	8	75	25	10.99	12.39
6	6.5	0.25	8	50	37	68.09	70.35
7	4	0.75	8	75	37	3.30	0.41
8	4	0.75	6	50	37	8.79	5.45
9	4	0.5	6	75	31	54.91	51.71
10	4	0.5	4	50	25	73.40	71.32
11	7.75	0.63	7	62.5	31	58.02	55.55
12	9	0.5	8	100	37	37.34	32.81
13	6.5	0.25	4	100	25	24.90	31.23
14	9	0.25	4	50	25	49.79	47.54
15	9	0.25	4	50	37	36.24	37.69
16	4	0.5	8	50	25	19.04	18.37
17	9	0.25	4	100	37	16.46	15.13
18	4	0.25	4	50	37	73.03	75.47
19	6.5	0.75	4	50	25	14.10	9.63
20	9	0.25	8	75	25	8.79	8.93
21	6.5	0.75	4	100	37	15.56	4.30
22	4	0.75	4	100	25	24.90	31.56
23	4	0.25	6	100	37	51.98	48.12
24	4	0.25	6	50	25	15.01	23.52
25	9	0.75	4	100	25	36.24	37.11
26	4	0.25	8	100	31	78.52	79.58
27	9	0.75	4	50	37	6.78	2.13

20

ANOVA for Response Surface Ouadratic Model Of D-Optimal for ethanol production										
	Sum of	l	Mean 1	F	p-value					
Source	Squares df	S	Square `	Value	Prob > F					
Model	8245.83	20	412.29	4.4	0.0371 Significant at P<0.05					
A-pH	315.53	1	315.53	3.36	0.0163					
B-Enzyme load (%)	187.44	1	187.44	2	0.0071					
C-Substrate concentration (gm)	8.32	1	8.32	0.089	0.0759					
D-Working volume (ml)	937.16	1	937.16	9.99	0.0195					
E-Fermentation temperature (°C)	516.77	1	516.77	5.51	0.0572					
AB	670.49	1	670.49	7.15	0.0368					
AC	365.25	1	365.25	3.9	0.0859					
AD	408.37	1	408.37	4.36	0.082					
AE	65.16	1	65.16	0.69	0.0664					
BC	1.07	1	1.07	0.011	0.075					
BD	2	1	2	0.021	0.087					
BE	1283.7	1	1283.7	13.69	0.0801					
CD	8.99	1	8.99	0.096	0.0673					
CE	216.35	1	216.35	2.31	0.1796					
DE	668.89	1	668.89	7.13	0.037					
A2	787.12	1	787.12	8.39	0.0274					
B2	564.73	1	564.73	6.02	0.0495					
C2	49.78	1	49.78	0.53	0.4937					
D2	126.72	1	126.72	1.35	0.2892					
E2	4.1	1	4.1	0.044	0.8413					
Residual	562.62	6	93.77							
Lack of Fit	252.79	3	84.26	0.82	0.5644not significant					
Pure Error	309.83	3	103.28		-					
Cor Total	8808.44	26								

Figure 5: A) 3D-surface plot for production of ethanol, B) contour plot (C) Normal plot, (D) Perturbation plot for bioethanol production by *Zymomonas mobilis*

Validation study

Further validation study was under taken using the optimal condition and found to be consistent with the optimized condition (ethanol=78.47%) 100 78.47% 80 % of Alcohol 60 40 20 0 10 20 30 40 50 60 0 Time (hrs) %Alcohol %Reducing sugar Figure 4:. Validation study on the production of alcohol and release of reducing sugar

CONCLUSION AND RECOMMENDATION

Biotechnological conversion of lignocellulotic material provides high yield of bioethanol.

✤The results of this study showed that Z. mobilis is an important biological material to produce bioethanol in short time frame.

✤ pH=4, enzyme load of 0.25%, substrate concentration of 8%, incubation temperature of 31°C and working volume 100ml was found to be optimum condition for production of bioethanol from seedcake.

The accuracy of the actual experimental result (78.52 %) fitted with the predicted value of conversion of reducing sugar to ethanol in the model (79.58%)

This result can be used as a reference for further scale up studies for production bioethanol at industrial level to use seedcake as a substrate.

ACKNOWLEDGMENT

- The World Academy of Science (TWAS) Trieste, Italy
- Department of Biotechnology (DBT), India,
- Arba Minch University, Department of Biology
- Families and friends

This study was undertaken in the Institute of Chemical Technology (Deemed University), University of Mumbai, India

THANK YOU!!